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ABSTRACT 
Simulations of complex scientific phenomena involve the 
execution of massively parallel computer programs.  These 
simulation programs generate large-scale multidimensional data 
sets over the spatio-temporal region.  Analyzing such massive 
data sets is an essential step in helping scientists glean new 
information.  To this end, efficient and effective data models are 
needed.  In this paper, we present a hybrid approach for 
constructing data models from large-scale multidimensional 
scientific data sets.  Our models not only provide descriptive 
information about the data but also allow users to subsequently 
examine the data by querying the data models.  Our approach 
combines a multiresolution-topological model of the data with a 
multivariate-physical model of the data to generate one 
hierarchical data model that efficiently captures both the spatio-
temporal and the physical aspects of the data.  In particular, this 
hybrid approach consists of three phases.  In the first phase, we 
build a multiresolution model that encapsulates the data set’s 
spatial information (i.e., topology and spatial connectivity).  In 
the second phase, we build a multivariate model from the physical 
dimensions of the data set.  Physical dimensions refer to those 
dimensions that are neither spatial (x, y, z) nor temporal (time).  
The exclusion of the spatial-temporal dimensions from the 
clustering phase is important since “similar” characteristics could 
be located (spatially) far from each other.  Finally, in the third 
phase, we connect the multivariate-physical model to the 
multiresolution-topological model by utilizing ideas from 
information retrieval.  The third phase is essential since the 
multivariate-physical model does not contain any topological 
information (without which the model does not have accurate 
spatial context information).  Experimental evaluations on two 
large-scale multidimensional scientific data sets illustrate the 
value of our hybrid approach.  

Categories and Subject Descriptors 
G.3 [Mathematics of Computing]: Probability and Statistics – 
Correlation and regression analysis, Multivariate statistics, 
Statistical computing.  H.2.8 [Database Management]: Database 

Applications – Data mining, scientific databases.  H.3.3 
[Information Storage and Retrieval]: Information Search and 
Retrieval – Clustering, Selection process.  I.5.1 [Pattern 
Recognition]: Models: Statistical.  I.5.3 [Pattern Recognition]: 
Clustering – Similarity measures. 

General Terms 
Algorithms, Management, Measurement, Performance, 
Experimentation. 

Keywords 
Multiresolution indices, topological models, multivariate clusters, 
information retrieval, large-scale scientific data sets. 

1. INTRODUCTION 
Utilization of massively parallel computer systems has enabled 
scientists to simulate complex phenomena.  Examples of such 
complex phenomena are evolutions and explosions of stars (see 
Figure 1), aftermaths of earthquakes, etc.  The computer programs 
that simulate these phenomena encode complex differential 
equations and produce tera-scale data sets over the spatio-
temporal region.  In order to glean information from such large-
scale data sets, scientists need efficient and effective models for 
analyzing and examining data [2, 5, 9].  Analysis and examination 
of data include generating descriptive information, finding 
outliers, processing users’ queries, etc.  To this end, we have 
developed a hybrid approach for constructing multiresolution 
models from large-scale scientific simulation data. 

 
Figure 1. Snapshots of an Astrophysics Simulation  

Involving a Star’s Explosion 
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Effective models for scientific data sets must capture the 
temporal, spatial, and physical dimensions of the data.  Physical 
dimensions1 refer to those dimensions that are neither spatial (x, y, 
z) nor temporal (time) such as temperature, pressure, and density.  
Most existing models of multidimensional scientific data do not 
distinguish between spatial, temporal, and physical dimensions.  
Instead, they try to reduce the number of initial dimensions by 
using dimension reduction techniques (e.g., principal component 
analysis) [13].  Our hybrid approach produces models that capture 
all dimensions of scientific data sets without dimension reduction.  
The central idea is to combine different models describing various 
characteristics of a large-scale multidimensional data set.  In 
particular, we combine two models of the data.  The first model is 
built solely from the spatial dimensions and the second model is 
constructed only from the physical dimensions.  Our approach 
consists of three algorithms: (i) spatial modeler, which captures 
topology and spatial connectivity; (ii) multivariate-physical 
modeler, which captures the physical variables in multivariate 
clusters; and (iii) physical-spatial linker, which produces the 
hybrid data model.  We trivially encode the discretized temporal 
dimension by constructing one data model per time step.  Figure 2 
provides a pictorial overview of our approach. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Pictorial Overview of Our Hybrid Approach 

The spatial modeler constructs a multiresolution model that 
encapsulates a data set’s spatial dimensions based on the intrinsic 
topology2 of the data given in the original scientific problem.  In 
                                                                 
1 We will use the terms physical dimensions and physical 

variables interchangeably. 
2 By topology, we mean the spatial connectivity of regions within 

the data set’s discretized spatial dimensions.   

particular, this modeler is a bottom-up algorithm, which 
iteratively agglomerates spatially connected regions [4].  

To capture the dimensions of the data that are neither spatial nor 
temporal, we build multivariate clusters on only the physical 
dimensions of the data.  The exclusion of the spatial dimensions 
from the clustering process is important since “similar” 
characteristics could be far from each other in the spatial region.  
Figure 3 illustrates this point with an example, in which the 
values of the physical variables in the outer layer of a star are 
homogeneous even though spatially the regions can be far apart. 

 
Figure 3. A Data Set Representing a Star  
(Similar Regions Have Similar Colors.) 

To build multivariate clusters, we utilize a smooth clustering 
algorithm in conjunction with the uncentered correlation 
coefficient (UCC) as our similarity function [10].  Our choices for 
the clustering algorithm and the similarity function were 
influenced by (i) the sizes of our data sets (which consist of tens 
of millions of data points in multiple dimensions) and (ii) the 
importance of capturing both direction and magnitude of physical 
dimensions.  The worst-case runtime of our clustering algorithm 
with UCC is O(k*n), where k is the number of resultant clusters 
and n is the total number of data points.  In Section 4, we 
empirically show that on average k is several orders of magnitude 
smaller than n.   
Since spatial dimensions do not play a role in building the 
multivariate clusters, it is important to associate each cluster with 
its precise spatial regions.  In particular, it is essential that 
multivariate clusters frame answers to scientists’ queries in the 
spatial location of the original data.  To achieve this, the physical-
spatial linker connects each multivariate cluster to the appropriate 
nodes of the multiresolution topological tree.  We utilize ideas 
from information retrieval to establish such connections.  The 
main challenge for physical-spatial linker is to find the best m 
nodes in the topology tree for each cluster, c, where m is much 
less than the number of data points in c. 

This paper is organized as follows.  Section 2 describes the data 
format for most scientific simulation data sets.  Section 3 presents 
our approach for constructing hybrid multiresolution data models.  
In Section 4, we describe our experiments on two large-scale 
multidimensional scientific data sets.  Sections 5 and 6 discuss 
some related and future works, respectively.  Finally, Section 7 
provides a summary of our work. 

2. Scientific Simulation Data in Mesh Format 
Most scientific simulation programs generate data in mesh format. 
Mesh data sets commonly contain zones, time steps, and physical 
variables.  Zones are distinct spatial elements, which are 



generated from interconnected grids on the x, y, and z axes in the 
Euclidean space.  The shapes of the zones can be regular (e.g., 
rectilinear) or irregular (e.g., arbitrary polygons).  Each zone is 
identified by its x, y, and z coordinates.  For examples, a cubic 
zone contains eight x, y, z triples, which identify its corners.  
Time steps are discrete steps in the temporal dimension.  Since 
data changes over time, it is stored at different time steps.  
Physical variables denote non-spatio-temporal information.  For 
each step in time, physical variables can be assigned values at a 
zone’s corners or its center.  

Figures 1 and 3 depict two mesh data sets produced by 
astrophysics simulations.  Figure 1 represents an explosion of a 
star.  Figure 3 depicts interactions of various components of a star 
at its mid-life.  The three major factors determining the size of a 
mesh data set are its number of zones, time steps, and physical 
variables.  Abdulla, et al [1] and Musick and Critchlow [14] 
provide nice introductions to scientific mesh data.  Our approach 
is implemented for scientific data in mesh format but it can be 
used for modeling any multidimensional data set that contains 
data points/vectors on discretized spatio-temporal dimensions. 

3. CONSTRUCTION OF HYBRID 
MULTIRESOLUTION MODELS FOR 
DATA ANALYSIS 
This section describes the three components of our approach for 
constructing a hybrid multiresolution data model.  They are (i) 
spatial modeler, (ii) multivariate-physical constructor, and (iii) 
physical-spatial linker. 

3.1 Spatial Modeler 
A precise spatial representation of a data set needs to capture the 
underlying topology of the original scientific problem.  This 
topological information is stored in the connectivity of the data 
set’s initial grid configuration (i.e., at its zones).  To this end, the 
immediate neighbors of each zone must be identified (see Figure 
4a).  Furthermore with large data, it is desirable to produce 
multiresolution models since they provide an efficient 
arrangement for the data [4].  To produce such models, our spatial 
modeler utilizes an iterative bottom-up agglomeration algorithm 
[9].  In particular, it employs a coarsening strategy that starts at a 
mesh data’s initial grid configuration (see Figure 4b).  From this 
fine level collection of grid cells, it iteratively produces coarse 
level collections of cells.  The coarsening strategy performs a 
local heuristic search on the 2N possible neighborhood 
configurations of a cell to find its connectivity (N = number of 
spatial dimensions). 
 
 
 
 
 
 
 
Figure 4. (a) The gray shape is an arbitrary zone in a 2D data 
set.  The arrows point to the eight neighbors of the zone. (b) A 
rectilinear grid encoding a sphere (with edges glued together). 

Figure 5 depicts the result of our coarsening strategy for a simple 
example.  At the first iteration, the coarse cells (C1, C2, and C3 
given by solid lines) are arranged from the twelve fine cells.  At 

the next coarsening iteration, the cells C1 and C3 are 
agglomerated to produce cell C4.  Cell C2 is not agglomerated in 
this iteration since it does not have a determinate right neighbor.  
At the last iteration, cells C2 and C4 are agglomerated to produce 
the root of the agglomeration tree.  

Figure 5. A non-quad tree coarse cell agglomeration 

Since coarse cells are representations of fine-level collections of 
grid cells, the values of physical variables stored at fine-level 
cells are propagated into the coarse cells.  In particular, for each 
physical variable within a coarse cell, we calculate its minimum, 
maximum, mean, and standard deviation from its values at the 
fine-level collection of cells [9].  These statistical values are then 
stored in the coarse cell. 

3.2 Multivariate-Physical Modeler 
Our multivariate-physical modeler constructs multivariate 
clusters.  The motivation for creating multivariate clusters is to 
capture the interrelationships among a data set’s physical 
variables in one metric.  Such a metric enables us to collectively 
measure similarities between data points, from which we can 
provide high-level descriptive information about the data. 

In multidimensional scientific data sets, each data point is (or can 
easily be converted to) a vector of values for physical variables 
defined over time and space [14].  That is, an (n+4)-dimensional 
data set consists of vectors of the following form: 
( )nv,,v,v,v,z,y,x,time         321 L .  In such cases, it is desirable to 
capture similarities in both direction and magnitude.  For 
example, applications in physics usually produce data sets that 
contain measurements for velocity (see Figure 6).  As such, if the 
goal is to find clusters of the data based on “similar” velocities, 
we will need to use a similarity function that encapsulates both 
direction and speed.  To this end, we use the uncentered 
correlation coefficient (UCC) [8] with an approximately optimal 
offset [10], which is defined as follows: 
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Figure 6. Velocity of a Star Exploding 

Using UCCopt eliminates the need for computing two metrics to 
measure similarities in direction (i.e., angles between vectors) and 
similarities in magnitude (i.e., distances between vectors).  This is 
important especially when dealing with large-scale data sets. 

We use a smooth (a.k.a., canopy) clustering algorithm to create 
multivariate physical clusters (see Table 1) [15].  Our smooth 
clustering algorithm does not require the total number of clusters, 
k, to be given a priori.  Instead, the given similarity threshold 
restricts our clusters.  By fixing such a threshold, we are able to 
isolate the quality of our resultant clusters solely based on offsets 
given for the uncentered correlation coefficient.   

Our clustering criterion is a conjunction of two conditions: (1) the 
similarity based on UCCopt must be meet, and (2) the cluster’s 
cohesion3 with a newly added data point must be at most the same 
without the new addition.  Our experimental results show that the 
second criterion reduces the running time of the clustering 
algorithm by a half.  The reduction in running time is attributed to 
our placement procedure.  Specifically, among clusters that can 
accept a given data point, we choose the first one that is “good 
enough” based on the cohesion constraint (as opposed to finding 
the optimal cluster to place the new data point).  In addition the 
differences between clusters produced with and without the 
second criterion are not statistically significant (see Section 4). 

The worst-case runtime of our clustering algorithm with UCCopt is 
O(k*n), where k is the number of resultant clusters and n is the 
total number of data points.  In Section 4, we empirically show 
that on average k is several orders of magnitude smaller than n.   

Table 1. Multivariate-Physical Modeler 

Inputs: 
• A collection of vectors, Vectors, representing the physical 

variables (i.e., dimensions) of zones in the data 
• A clustering (i.e., similarity) threshold, SimThreshold 
• An offset for the uncentered correlation coefficient, offset 

Output:  
• A collection of clusters, Clusters 

Algorithm: 
a) Clusters ← {}; 
b) MaxCohesion ← −∞; 
c) For each vector, α

r
, in Vectors do 

i) If (Clusters is empty) 

                                                                 
3 See Section 4.2 for a formal definition of cluster cohesion. 

(1) Create a new cluster, C; 
(2) Add α

r
 to C;  

(3) Create C’s center, ς
r

; 
(4) Add C to Clusters; 

ii) Otherwise 
(1) For each cluster, Ci, in Clusters 

(a) CurrCohesion = Cohesion(Ci) 
(b) If (CurrCohesion > MaxCohesion) 

(i) MaxCohesion ← CurrCohesion; 
(c) NewCohesion ← Cohesion(Ci with α

r
) 

(d) If ( )( offset,offset,,Sim ςα
rr

≥SimThreshold)
and (NewCohesion ≤ MaxCohesion) 

(i) Add α
r

 to C;  
(ii) Update Ci’s center, ς

r
 

(iii) Break; 
(e) Otherwise 

(i) Create a new cluster, C; 
(ii) Add α

r
 to C;  

(iii) Create C’s center, ς
r

; 
(iv) Add C to Clusters; 

 

3.3 Physical-Spatial Linker 
Even though spatial variables do not play a role in building our 
multivariate-physical clusters, it is desirable to associate each 
cluster with its precise spatial region.  In particular, it is important 
for the clusters to return answers to scientists’ queries in the 
spatial region of the original mesh.  Since mesh data typically 
have millions of zones, it would be very inefficient (and at times 
impossible) to link each cluster with all of its zones.  Therefore, 
we present a linking algorithm for connecting each cluster to a 
small set of nodes in the topology tree.  Recall that a data set’s 
topology tree is a multiresolution model that stores the spatial 
information of a data set by utilizing the intrinsic topology of the 
data given in the original scientific problem (see Section 3.1).  To 
accomplish this task, we utilize ideas from the field of 
information retrieval.  In particular, given a cluster C={c1, c2, c3, 
…, cm} and a topology node T = {t1, t2, t3, …, tn}, we define 
precision and recall as follows (see Figure 7):   

precision(C, T) = 
T

TC I
 and recall(C, T) = 

C
TC I

 

 
 
 
 

Figure 7. Clusters and Topology nodes share zones. 

Table 2 describes the physical-spatial linker.  A link is established 
between a cluster and a topology tree node when at least one the 
following conditions are true: (i) the breakeven point is satisfied 
(i.e., precision is equal to recall), or (ii) precision is greater than a 
user-defined precision threshold.  Obviously, links with both high 
precision and recall values are desired.  The test for break-even 
point insures that such links are selected even if their precision 
does not satisfy the user-specified threshold.  Such “good quality” 
links act as shortcuts into potentially tall topology trees. 

Cluster 
C 

Topology 
Node T

C∩T 



Table 2. Physical-Spatial Linker 

Inputs: 
• A collection of zones, Z  
• A topology tree, T 
• A precision threshold, PrecThreshold 
• An offset for the uncentered correlation coefficient, 

offset 

Output:  
• A collection of clusters, Clusters, and links connecting 

Clusters to the topology tree, T 

Algorithm: 
1) For each zone, zi, in Z do 

a) Place zi in the appropriate cluster, Cj (see Table 1); 
b) Update the count for occurrences of Cj in zi’s ancestors 

within the topology tree, T; 
2) Iterate through the unexamined nodes, Ti, of the topology 

tree in a depth-first order 
a) For each cluster, Cj, do 

i) If ( (precision(Cj, Ti) ≥ recall(Cj, Ti)) or  
 (precision(Cj, Ti) ≥ PrecThreshold) ) 

(1) Establish a link between Cj and Ti; 
(2) Store precision(Cj, Ti) with the established link; 
(3) Mark the subtree rooted by Ti as examined for Cj 

(i.e., do not iterate through the subtree rooted by 
Ti for Cj); 

 

4. EXPERIMENTS 
This section describes the performance of the multivariate-
physical modeler and the physical-spatial linker.  Experiments for 
spatial-modeler can be found in [4]. 

4.1 Data Sets 
Table 3 describes the two large mesh data sets used in our 
experiments.  Recall that mesh data sets vary with time, consist of 
multiple dimensions (i.e., variables), and contain interconnected 
spatial grids.  Such grids break the mesh data into zones, in which 
data points are stored.  The shape of the zones can be regular 
(e.g., rectilinear) or irregular (e.g., arbitrary polygons). 

Table 3. Characteristics of Our Data Sets 

Data Sets 
# of Zones  
per Time 

Step 

# of 
Variables  
per Zone 

# of  
Time 
Steps 

White Dwarf 557,375 29 22 

Djehuty-5 1,625,000 27 16 

Both mesh data sets are astrophysics simulations of a star at a 
certain stage of its life and represent readings in point locations of 
a continuous medium.  The data sets are represented as zones.  In 
these data sets, zones are small cubes with 8 nodes.  Values of 
variables are associated either with each node of a zone (called a 
nodal variable) or with the center of each zone (called a zonal 
variable).  The White Dwarf data set (see Figure 1) is a 
simulation of a star exploding.  The Djehuty data set (see Figure 
3) is a simulation of a star at its mid-life. 

4.2 Results on Multivariate-Physical Modeler 
Tables 4 and 5 list the results of the multivariate-physical clusters 
for White Dwarf and Djehuty-5, respectively.  All values for 
physical variables are normalized to fall within 0 and 1.  The 
following performance metrics are used in these tables: 
• Intracluster cohesion measures the compactness of the clusters 

by utilizing the trace of the covariance matrix.4  In other words, 
we sum the variances of each cluster across all of its 
dimensions [12].  The following equation provides a formal 
definition for our intracluster cohesion metric for any cluster C 

with a center ς
r

: ( ) ( )∑
=

=
n

i
i,VarianceCcohesion

1
ς
r

, where n is 

the number of physical dimensions in the data set.  Compact 
clusters have small intracluster cohesion numbers.  The average 
cluster cohesion corresponds to the average value of cluster 
cohesions for a particular time step. 

• Intercluster separation is between cluster variations.  We 
measure cluster separation by utilizing the weighted covariance 
of cluster means.  In particular, we sum the weighted squared 
differences between cluster means [12]. The following equation 
provides a formal definition for our intercluster separation 
metric:  
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i
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1
 is the total number 

of vectors in the data set, and ( )µµ −k  is a vector of 
differences between cluster Ck’s mean vector and the global 
mean vector of all the data points.  Well-separated clusters 
have large intercluster separation numbers.  The average cluster 
separation corresponds to the average value of cluster 
separations for a particular time step. 

• Cluster quality measures the general quality of a cluster by the 
ratio of its intercluster separation to intracluster cohesion (i.e., 

cohesion
separation ).  Higher values for the overall quality indicate 

better performance.  The normalized average cluster quality 
corresponds to the average value of cluster qualities for a 
particular time step normalized by its number clusters. 

Table 4. White Dwarf’s Multivariate Clusters with Similarity 
Threshold of 0.95 (where 1 Denotes Complete Similarity). 

Time 
Step 

# of 
Clusters 

Avg 
Cluster 

Cohesion 

Avg Cluster 
Separation 

Normalized 
Avg Cluster 

Quality 
0 31 0.0031 3.75 38.48 
1 48 0.0040 3.72 19.25 
2 30 0.0173 3.72 7.19 
3 31 0.0250 3.79 4.89 
4 32 0.0251 3.73 4.65 

                                                                 
4 The trace of the covariance matrix is the sum of its diagonal 

entries.  The diagonal entry in a covariance matrix, Cov(X, X), 
is equivalent to the variance of X. 



5 33 0.0201 3.75 5.65 
6 40 0.0182 3.81 5.25 
7 44 0.0120 3.72 7.03 
8 47 0.0113 3.75 7.04 
9 44 0.0087 3.80 9.94 

10 48 0.0077 3.66 9.95 
11 39 0.0195 3.84 5.06 
12 43 0.0182 3.86 4.93 
13 39 0.0218 4.02 4.74 
14 41 0.0199 3.55 4.35 
15 41 0.0209 3.58 4.19 
16 41 0.0203 3.55 4.26 
17 41 0.0206 3.55 4.20 
18 38 0.0285 3.77 3.48 
19 40 0.0215 4.08 4.75 
20 37 0.0214 3.93 4.98 
21 38 0.0199 3.87 5.11 

 
Table 5. Djehuty-5’s Multivariate Clusters with Similarity 
Threshold of 0.95 (where 1 Denotes Complete Similarity). 

Time 
Step 

# of 
Clusters 

Avg 
Cluster 

Cohesion 

Avg Cluster 
Separation 

Normalized 
Avg Cluster 

Quality 
0 247 0.0036 3.69 4.11 
1 66 0.0075 3.54 7.12 
2 79 0.0017 3.12 23.72 
3 83 0.0046 3.28 8.52 
4 80 0.0026 3.29 15.80 
5 85 0.0040 3.15 9.32 
6 90 0.0026 3.26 13.79 
7 96 0.0016 3.28 21.52 
8 94 0.0021 3.21 16.56 
9 70 0.0028 3.38 17.13 

10 68 0.0040 3.34 12.24 
11 90 0.0031 3.10 11.11 
12 89 0.0023 3.13 15.44 
13 87 0.0027 3.16 13.69 
14 96 0.0024 3.23 13.81 
15 56 0.0052 3.52 12.14 

 
Variations in the number of clusters across time steps represent 
changes in a star as it explodes (Table 4) or evolves (Table 5).  In 
Tables 4 and 5, the values for the best average cluster cohesion, 
separation, and quality are boldfaced.  In both data sets, clusters 
with the best average cluster cohesion also have the best average 
cluster quality.  However, clusters with the best average 
separation do not have the best average cluster quality.  This 
outcome is not unexpected since our multivariate-physical 
modeler is biased toward cluster cohesion.  Due to limitations in 
space, we do not list the results without the maximum cohesion 
criteria for our data sets.  However, on our data sets, the two-sided 
tests with normal and student t-distributions on mean differences 
between results with and without the maximum cohesion criterion 
are not statistically significant at 95% for (i) number of clusters 
and (ii) normalized average cluster quality.  Recall that we utilize 
this cohesion criterion in order to speed-up the clustering 
algorithm by not searching for the optimal cluster to put a new 
data point.  Instead a new data point is placed in the first cluster 
that (i) meets the user’s similarity threshold and (ii) its cohesion 

does not increase with the new addition.  In our experiments, the 
runtime was reduced by half (which is usually several hours). 

4.3 Results on the Physical-Spatial Linker 
This section depicts the results of our physical-spatial linker.  It 
shows how effectively multivariate-physical clusters can be 
connected to topology tree nodes to create one hybrid data model.   
The topology trees constructed for White Dwarf and Djehuty-5 
have 10 levels (i.e., the height from root to leaves).  As mentioned 
in Section 3.1, minimum, maximum, mean, and standard 
deviation values are stored at each node in the topology tree.  
Model error in these nodes is a function of standard deviation [4].  
As one moves from the leaves toward the root of a topology tree, 
model errors in the nodes increase because standard deviation 
values increase. 

4.3.1 Ratio of Links to Cluster Items 
Figures 8 and 9 illustrate average ratio of the number of links 
between clusters and topology nodes to the number of items in 
clusters for White Dwarf and Djehuty-5, respectively.  As the 
precision threshold increases, more links are required and so the 
ratio gets closer to 1.  However, note the small increase in the 
ratio as the precision threshold is increased from 0.25 to 0.5 as 
opposed to the more substantial increase in the ratio as precision 
threshold is increased from 0.5 to 0.75.  This outcome is expected 
since as precision gets closer to one, links can only be established 
between cluster items and topology tree nodes that represent the 
same underlying data.  That is, there does not exist a linear 
relationship between precision and the number of physical-spatial 
links.   
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Figure 8. White Dwarf: Ratio of Physical-Spatial Links to 

Cluster Items for Various Precision Thresholds 
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Figure 9. Djehuty-5: Ratio of Physical-Spatial Links to 

Cluster Items for Various Precision Thresholds 



4.3.2 Number of Physical-Spatial Links 
Figures 10 and 11 depict the maximum number of links between 
clusters and topology nodes for various precision thresholds on 
White Dwarf and Djehuty-5, respectively.  They support the 
results and discussion in Section 4.3.1.  As precision approaches 
one, the number of required links for connecting the multivariate-
physical model to the spatial model increases nonlinearly because 
each link is forced to include less cluster items. 
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Figure 10. White Dwarf: Maximum Links between Clusters 
and Topology Nodes for Various Precision Thresholds 
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Figure 11. Djehuty-5: Maximum Links between Clusters and 

Topology Nodes for Various Precision Thresholds 

4.3.3 Levels into Topology Tree 
Figures 12 and 13 show the normalized levels of the topology tree 
accessed by physical-spatial links for various precision thresholds 
on White Dwarf and Djehuty-5, respectively.  Values close to 1 
indicate levels near the leaves of a tree.  Values close to 0 denote 
levels near a tree’s root.  Recall that the trees each have 10 levels.   

Links that are high in precision and point to levels close to the 
tree’s root are desirable.  As these figures depict, there is an 
intrinsic tradeoff between links having high precision and 
pointing to levels near the root.  In other words, we see the usual 
tradeoff between precision and recall.  Finally, it is interesting to 
note that the nonlinear relationships described in Section 4.3.1 
(between precision and the ratio of links to cluster items as 
precision nears one) and Section 4.3.2 (between precision and 
number of links as precision nears one) are absent here.  In this 
case, the nonlinear relationships are visible as precision 
approaches zero.  A precision threshold of 0.25 is not close 
enough to zero to show these nonlinear relationships. 
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Figure 12. White Dwarf: Ratio of Topology Tree Levels 

Accessed for Various Precision Thresholds 
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Figure 13. Djehuty-5: Ratio of Topology Tree Levels Accessed 

for Various Precision Thresholds 

5. RELATED WORK 
Little research has been done on similarity metrics that capture 
both direction and magnitude.  Uncentered correlation 
coefficients are mostly popular in microarray analysis [6, 8].   

Popular clustering algorithms [16] (such as DBSCAN) cannot be 
used or scaled to large-scale scientific simulation data sets for one 
or more of the following reasons: 

1. Our modeling techniques cannot require sampling.  Scientists 
already sample the data produced by their simulation 
programs.  They do not accept models that sample from the 
sampled data, particularly since they are mostly interested in 
outliers (which are either bugs in their programs or new 
scientific discoveries).  

2. We cannot build clusters from zones in a subspace of the 
data since global properties are important. 

3. It is not desirable to use binning or histograms techniques 
since we are not supposed to assume an a priori distribution 
on the data.  Moreover, histograms are computationally 
expensive on high-dimensional data sets. 

Our work is similar to Freitag and Loy [11].  Their system builds 
distributed octrees from large scientific data sets.  However, they 
reduce their data by constraining the points to their spatial 
locations.  This strategy does not allow for grouping of data 
points with similar physical values that are spatially far from each 
other. 



STING [17] is also similar to our work except that it assumes that 
the distribution of the data is known.  Also, it has been tested only 
on small data sets containing only tens of thousands of data 
points.  DuMouchel, et al [7] present a method for compressing 
flat files; however, they use binning techniques to “squash” files, 
which impose a priori distributions on the data   Finally, AQUA 
[3] uses cached summary data in an OLAP domain.  They also 
use sampling and histogram techniques, which are not acceptable 
in our models. 

6. FUTURE WORK 
We are investigating other modeling techniques for large-scale 
simulation data sets.  Specifically, we are interested in models 
that (i) require only one sweep of data, (ii) are good at finding 
outliers, (iii) can be easily parallelized, and (iv) can efficiently 
answer a wide variety of queries.  In addition, we are examining 
other criteria for encapsulating direction and magnitude.  We 
intentionally did not discuss the simple criteria of using a 
weighted combination of popular similarity and dissimilarity 
metrics since appropriate selection of weights for the two metrics 
can be tricky.  Finally, we plan to develop tools, which track a 
particular zone across time steps.  Such tools will not only help 
scientists’ in their investigation but also will provide us with 
insights into our modeling algorithms. 

7. CONCLUSION 
Massively parallel computer programs (which simulate complex 
scientific phenomena) generate large-scale data sets over the 
spatio-temporal region.  Analyzing such massive data sets is an 
essential step in helping scientists glean new information.  To this 
end, efficient and effective data models are needed.  In this paper, 
we presented a hybrid approach for constructing data models from 
large-scale multidimensional scientific data sets.  Our data models 
not only provide descriptive information about the data but also 
allow users to examine the data further by querying the data 
models.  Our approach combines a multiresolution-topological 
model with a multivariate-physical model to generate one 
hierarchical data model that efficiently captures both the spatio-
temporal and the physical aspects of the data.  The exclusion of 
the spatial-temporal dimensions from the multivariate-physical 
models is important since “similar” characteristics could be 
located (spatially) far from each other.  We connect the 
multivariate-physical model to the multiresolution-topological 
model by utilizing ideas from information retrieval.  Experimental 
evaluations on two large-scale multidimensional astrophysics data 
sets illustrate the value of our hybrid data model in capturing the 
evolution and explosion of a star through the combination of 
multivariate-physical clusters and a topology tree.  Finally, our 
approach confirms the notion that a combination of multiple 
models, which describe different characteristics of a data set, is 
effective on large-scale multidimensional scientific data. 
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